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Abstract. We perform mean-field and renormalisation group calculations for a spin-1 lsing 
model with bilinear and biquadratic exchange interactions. A special Baker-Hubbard 
formula is used to transform from discrete to continuous spin-like variables. In momentum 
space, this spin-I model and the lsing metamagnet in zero staggered field can be described 
by the same reduced Hamiltonian. We show that the Gaussian tricritical fixed point cannot 
be reached without the inclusion of single-ion terms in the initial Hamiltonian. 

1. Introduction 

We report detailed mean-field and renormalisation group calculations for a spin-1 
Ising model with bilinear and biquadratic exchange interactions. This model Hamil- 
tonian, which is a special case of the Blume-Emery-Griffiths (BEG)  model for the 
multicritical behaviour of 3He-4He mixtures (Blume et a11971), is relevant, for instance, 
in the study of some very simple compressible Ising systems. 

There are different ways to account for the influence of elastic vibrations on the 
critical properties of Ising spin systems (Salinas 1974, Bergman and Halperin 1976, 
Bruno and Sak 1980). For example, Domb (1956) considered an Ising model where 
the exchange parameter J depends on the volume of the crystal lattice. In Domb’s 
model, there is a mechanical instability and the transition becomes first order. On the 
other hand, in a well known publication, Baker and Essam (1970) introduced a simple 
cubic Ising model where the exchange parameter is a linear function of the atomic 
displacements, the elastic potentials are harmonic and the shear forces are completely 
neglected. This compressible Ising model, which can be solved exactly in two 
dimensions, presents a continuous phase transition, with renormalised critical 
exponents at fixed densities. In a subsequent publication, Gunther er a1 (1971) noticed 
that the solution of the Baker-Essam model could have been considerably simplified 
in a particular ensemble, with fixed forces acting on all rows and columns of atoms. 
In this force ensemble, if we integrate the elastic degrees of freedom, it is easy to write 
an effective spin Hamiltonian 
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where J2 is a linear function of the forces, J4 is a positive constant and (ij) represents 
a sum over nearest neighbours on a hypercubic lattice in d dimensions. Of course, 
for spin $, the second term on the right-hand side of equation (1.1) is a constant and 
the problem reduces to the calculation of the usual Ising partition function. In this 
case, the transition is of second order in the force ensemble, with Ising critical 
exponents, and, as we remarked above, the critical indices corresponding to fixed 
densities are Fisher-renormalised (Fisher 1968). It is then interesting to investigate 
the nature of the phase transition of general spin compressible Ising models in the 
force ensemble. In the present paper, in particular, we assume the simplest possibility, 
namely S, = +1,0, -1, for all sites i, and focus the attention on the model Hamiltonian 
given by equation (1.1). 

As we report in 9 2, a naive mean-field calculation, via the Bogoliubov inequality 
with a one-parameter free trial Hamiltonian, leads to a tricritical point separating lines 
of second- and first-order phase transitions. By the way, this result still persists if we 
assume a continuous spin variable, insert the usual weight factor and perform an 
&-expansion renormalisation group calculation. However, a more detailed mean-field 
calculation, involving a two-parameter trial Hamiltonian, indicates the suppression of 
the tricritical point and the line of first-order transitions, in qualitative agreement with 
results for the spin-; model. Also, this is in agreement with exact calculations for the 
Curie-Weiss long-range version of the model Hamiltonian (1.1). 

The lack of agreement between the mean-field calculations, as well as the possible 
occurrence of a fluctuation induced tricritical point (Aharony and Blankschtein 1984), 
motivated the undertaking of a renormalisation group analysis of the spin-1 Ising 
model given by equation (1.1). In § 3 we perform a Baker-Hubbard transformation 
(Baker 1962, Hubbard 1972) from discrete spins to a pair of continuous spin-like 
variables. To make contact with previous calculations (see, for example, Lawrie and 
Sarbach 1984), we include in equation (1.1) a single-ion term, given by A C, ST. The 
reduced Hamiltonian, in terms of critical and non-critical spin fields, may be cast in 
the same form which had already been considered by Nelson and Fisher (1975) in the 
treatment of the Ising metamagnet. In § 4 we use the results of Nelson and Fisher’s 
paper to reproduce the configuration of fixed points, with the inclusion of a Gaussian 
tricritical fixed point. As the Baker-Hubbard transformation does not require the use 
of unknown weight factors, we are able to show that, for A = 0, the tricritical fixed 
point cannot be reached from the physical parameter space. We thus conclude that 
the transition of the Baker-Essam model is always second order, without the occurrence 
of fluctuation induced multicritical points. This is also in agreement with results from 
real space renormalisation group calculations for two-dimensional (Berker and Wortis 
1976, Kaufman er a1 1981) as well as three-dimensional (Yeomans and Fisher 1981) 
versions of the BEG model. Some final remarks and possible extensions of this work 
are presented in § 5 .  

2. Mean-field calculations 

The mean-field expression for the Gibbs free energy, G (  T, H, N ) ,  where T is tem- 
perature, H is the applied field and N is the number of spins, may be obtained from 
the Bogoliubov inequality 

G S  G o + ( X - - % ? o ) ~ ~ @  (2.1) 
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where 

P = (kBT)-l, k ,  is Boltzmann's constant and x0 is a trial Hamiltonian. The sum is 
over spin configurations and the canonical average (. . .)o is taken with respect to Z0. 
We have considered two distinct trial Hamiltonians: 

xo= -77 c SI (2.3) 
I 

where 7, 7, and 77, are variational parameters with respect to which we minimise 0 
to obtain the mean-field approximation for the Gibbs free energy. 

Using the trial Hamiltonian (2.3) we show the existence of a A line which ends at 
a tricritical point given by kBT/qJz  =$  and p = J4/J2  = 3. Using the trial Hamiltonian 
(2.4), with two variational parameters associated with SI and Sf respectively, as 
suggested by the renormalisation group calculations of the following section, we obtain 

( l /N)@= - ( l / P )  ln[1+2 e x p ( h 2 )  cosh P ~ , ] - ~ q J , m ~ - ~ q J 4 m ~ - ( H - ~ 1 ) m l + ~ z m 2  
(2.5) 

where 

and 

(2.7) 

It is convenient to use equations (2.6) and (2.7) to write 77, and 7, in terms of m I  and 
m,. We then minimise 0 with respect to the non-critical density m, and write the 
Landau expansion 
1 1 - @ = - In( 1 - a )  + ;qJ,aZ - Hm,  + 
N P  

1 - 1 + 3 ~ - 2 y a ( l - a )  
P 24a3[1-ya(1-a)]2 

+- m: + O( m:) 
where y = PqJ4 and a is the solution of the equation 

a = 2( 1 - a )  exp( ?a).  

In the T x p space, the critical line is given by 
aPqJz = 1 .  

(2.9) 

(2.10) 
In this case, it is straightforward to see that there is no tricritical point, since the 
coefficient of the quartic term is positive along the critical line for all physical values 
of T and p .  This conclusion still holds if we perform an exact calculation for the 
Curie-Weiss long-range version of Hamiltonian ( l . l ) ,  as in the work of Tanaka and 
Mannari (1976). Also, it should be remarked that a Bragg-Williams calculation, as in 
the work of Lajzerowicz and Sivardiire (1979 ,  leads to the same mean-field equations 
of state which can be obtained from the minimisation of @. 
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3. The continuous variable formulation 

To perform an &-expansion renormalisation group calculation it is important to trans- 
form from discrete to continuous spin-like variables. This is usually done by the 
Gaussian transformation: 

However, for most spin systems K , ,  = 0 and this transformation is not well defined 
(since Tr K = 0, which leads to negative or zero eigenvalues for the matrix K ) .  For 
spin f, Sf = 1 and it is easy to remedy this problem. In this case we can add to K,] an 
arbitrary constant matrix element, c&, the only consequence being a shift of the energy 
by a trivial constant term cN. For arbitrary spin, this trick does not work and we have 
to resort to another version of the Gaussian formula (Baker 1962): 

(3.2) 

which holds for all symmetric matrices K,,, where K;’* satisfies the equation 

K;’’K;L2= K,k. (3.3) 
I 

The partition function associated with Hamiltonian ( l . l ) ,  in zero field but with the 
inclusion of a single-ion term, is given by 

(3.4) 

where (Ku ;  Ll j )  = ( P J 2 ;  P J J ,  when i and j are nearest neighbours, and zero otherwise, 
and D=pA. Using the transformation (3.2) we have 

where KL12 = p J : / 2  and Lbl2 = PJ:” when i and j are nearest neighbours. It should 
be remarked that the continuous variable X ,  is associated with S, and Yl with Sf. 
After performing the sum over configurations we have 

I 

Z =  D X  D Y e x p  Y f : + ~ I n ( 1 + 2 e - ” ~ c o s h x 1 )  i 2 1  

where 

and 



RG calculations for a spin-1 Ising model 193 

The reduced Hamiltonian to perform the renormalisation group calculations may 
be found by expanding the integrand in equation (3.6) about its saddle point, given 
by the solutions of the equations 

and 

2 exp(-w,) cosh x, 
- L;’=o. (3.9) ’-? 1 + 2  exp(-w,) cosh x, 

There is a trivial paramagnetic solution, X ,  = 0 and Y, = Yo,  such that 

(3.10) 

where LA at zero momentum. It should be 
remarked that equations (3.8) and (3.9) correspond to the minimisation conditions of 
the mean-field free energy given by equation (2.5). The expansion about the paramag- 
netic solution yields the equation 

= C, L;’ is the Fourier transform of L:, 

Z = exp( 2?,)) D X  D Y exp( 2?i (3.11) J 
(3.12) 

and %‘ is the reduced Hamiltonan. Then 2? can be rewritten according to the following 
steps: ( i )  an expansion about the paramagnetic solution up to fourth-order terms in 
X ,  and SY, = Y, - Yo, ( i i )  a d-dimensional Fourier transformation, (iii) the usual 
low-momentum expansion of all the coefficients and (iv) a rescaling of the spin 
variables, u , , ~  -+ XI and u2.1 + ay,.  I f  we suppress the notation for vectors in the 
Fourier space, i t  is possible to write 

+ 2u12‘l ,I, . k ~ u 2 , 1 , ‘ 2 , - A ,  ~~ I,- hi 

+ U 2 2  g2.I U 2 . I ;  V2.I,U2~ - I - Iz - I ,  i (3.13) 

where r l  = k,( T - T,)/2A,.J2a2, r3 = k B (  T - T2)/2A,,J,a2, a is the lattice spacing, 
N u d  = V and the remaining expressions are defined.in the appendix. 

4. The renormalisation group treatment 

The reduced Hamiltonian, given by equation (3.13), corresponds to the Nelson and 
Fisher Hamiltonian for the Ising metamagnet in  zero staggered field (compare with 
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equation (3 .3)  of Nelson and Fisher (1975) for r I 2  = w3 = w4 = 0 ) .  Some differences, 
such as the sign in front of w 2 ,  are associated with irrelevant variables, which will 
disappear after a few iterations. The renormalisation group analysis is therefore entirely 
analogous to that of Nelson and Fisher (1975). However, as this paper has a number 
of misprints, and there are no errata available, we have decided to reproduce the main 
steps of their calculations with the necessary corrections. 

According to Nelson and  Fisher (1975), we use perturbation theory to treat the 
non-quadratic terms o f the  reduced Hamiltonian, with the ansatz r , ,  U,,, u I 2 ,  u22 = O ( E )  
and O ,  , w2 = O(&),  where E = 4 - d. In order to generate a new Hamiltonian %" from 
2, we choose a rescaling factor b >  1 and integrate over the spin variables ul,qr uz,q 
with momentum bq outside the original Brillouin zone. The spin field rescaling factors 
c ,  and c2 are allowed to be distinct. The inverse Feynman propagators are given by 

( 4 . 1 ~ )  G;'(q,  r l )  = rl + elq2 

and 

G;l(q, rz) = rz+ezq' (4 . lb)  

where the reason to take e, # e ,  (with e, = 1 )  will become clear later. 
After each renormalisation group iteration, the cubic terms in the reduced Hamil- 

tonian generate linear terms in the spin field uz,q. Then, to obtain a transformed 
Hamiltonian with the same form as before, without linear terms, it is necessary to shift 
u2 after each iteration. According to these procedures we obtain the recursion relations 

(4.2) ri  = c:b-"[r,+ 12Alou,, - 4 A , , w i - 2 A , , ( w : / r z ) + O ( u , 2 ,  w1w2)]  

r i =  ~ : b - ~ ( r ~ - 2 A ~ ~ w T + O ( u , z ,  ~ 2 2 ,  wf, w 1 w 2 ) )  (4.3) 

(4.4) e' I - - c z  ,b-d-2el+O(w:, w l w z )  

e;= cfb-d-'e,+O(wt, w I w 2 )  (4.5) 

=c:czb-'"(wl- ~ ~ A ~ ~ W ~ U ~ ~ + ~ A ~ , W ~ + O ( ~ ~ U ~ ~ ,  O ~ U , ~ ,  w,wf))  (4.6) 

(4.7) U;= c;b 

= ~ : b - ~ ~ ( ~ 1 1 - 3 6 A z o ~ : I  +24A,Iu,,oT-4Azzw;l+O(u:z, u , ~ w : ) )  (4.8) 

3 -2d  
(wz+$43ow:+O(wzu22,  w l u l z ,  a:, wluZ2)) 

u;,=~:~:b-~~(~1~+24A3~~11~:-8A31o~+O(u~~u~1, U : ? ,  U ~ ~ O J : ,  uzzwf, wfw:)) (4.9) 

(4.10) 

[ GI(dl ' [  G,(q)l" (4.11) 

over the outer d-dimensional momentum shell as discussed 

U;, = c4b 

where 

A h  = I,' 
in which we integrate 
before. We have also anticipated the fact that w 2 ,  u 1 2  and u22 are irrelevant. 

From equation (4.3) we see that if c ,  and c2 are chosen such that e, and e, are 
kept equal to unity, then r2 diverges when r l  is at criticality. This happens because 
Azo contains two GI  propagators which develop infrared singularities when r, = 0. 
This can be avoided by choosing 

(4.12) 1 -  - b3-'/2 (1 + 0 ( E 2 ) )  
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and 

2 -  -b2-F/2 [ I +  A2o(@:/r2) +O(E')I. (4.13) 

Also, r2 is kept fixed, e, = 1 and we have 

e ;  = b-,( e,+ O( E ' ) )  = b-2+f /2 (w2+0(E3 /2 ) )  (4.14a) 

us2 = b-4+F( ~ 4 , ~  + O( E ' ) )  (4.146) 

from which we see that e , ,  w , ,  u22 and u I 2 ,  are irrelevant and disappear after a few 
renormalisation group iterations. Finally, we have, up to terms of O( E'), 

u : ~  = b-2+r( ~ , , + O ( E * ) )  

ri = b2[r l+ 12Al0u,, -6Alo(w~/rz)-12A20rlulI+6A20rl(w~/r,)] (4.15) 

w '1 = w + w E In b - 1 2A2,wl u1 , + 5A2,w:/ rz (4.16) 

u i l  = U , ]  + u l l &  In b - 36A2,u:, + 2 4 A 2 0 ~ l l w l / r 2  - 4A2,w;/r: (4.17) 

where the integrals A,, are calculated for d = 4 with rl = 0. At this point, it should be 
emphasised that we are considering the case r2 > r, . This corresponds to T2 < TI, i.e. 
either to A = 0 or to p = J4/J2 < 1 for A # 0, as can be seen from equations (3.10) and 
(A4). 

If we define 

x = w:/r2 (4.18) 

the fixed points of equations (4.16) and (4.17) are given by 

UT1 = o  x * = o  (4.19a) 

x * = o  (4.19 b)  

x* = kc ( 4 . 1 9 ~ )  

x*  = ff (4.19d) 

-1- 
1 1  - 9 E  

l l  - 4 E  
-I- 

where 

E In b 
E =  = ce. 

A2"(r, =0,  e, = 1) 
(4.20) 

As Azo- In b, the constant c does not depend on b. The nature of the fixed points can 
be determined by studying the eigenvalues A,  = b*l of the linearised recursion relations 

(4.21) 

In particular, the critical exponent v is given by v = l / A l ,  where A I  is the largest 
eigenvalue. From equations (4.4) and (4.121, we see that e, = 1 +O(E') ,  which yields 
7 =O(E*).  These results are summarised in table 1. 

It remains to be analysed whether the fixed points are accessible from the physical 
parameter space. The condition for the existence of a tricritical point is the vanishing 



196 C E I Carneiro, V B Henriques and S R Salinas 

Table 1. Fixed points, eigen1alues A ,  and the corresponding eigenbectorsy, in the subspace 
U ,  I ,  .x and the critical exponents v associated with the recursion relations given by equations 
(4.15 i - I  4. I 7  i. 

of the coefficient g of the quartic term in the critical field U, after the integration over 
the non-critical fields. I t  is easy to show that 

(4.22) g = u i  , - w f /2 r2 .  
Using the expressions for the couplings, given in $ 3 ,  we have 

~ ~ - ~ d ~ ( 1 + 2 e d ) ( 2  e?-p-4) 
6 ed(2 e d - p +  1) 

(4.23) 

where p = - Y&" and e = -w,, = p - D. For D = 0, as in the Baker-Essam model, 
g # 0 for all p ,  and there is no tricritical point. For D # 0, however, as in the work of 
Blume et a1 (1971), g may vanish and there is a tricritical point. I t  should be remarked 
that the parameter p may be easily interpreted as the ratio J4/ J 2  up to terms of order E .  

- - 

5. Conclusions 

We have performed mean-field and renormalisation group calculations for a spin-1 
Ising model with bilinear and biquadratic exchange interactions. Although a naive 
mean-field variational approach leads to a tricritical point, a more refined approxima- 
tion, based on two variational parameters, shows that the transition is always second 
order. 

We have used a special Baker-Hubbard Gaussian formula to transform the Hamil- 
tonian, with the addition of single-ion terms, from discrete to continuous spin-like 
variables. As the transformation keeps track of the original parameters of the model, 
we were able to establish the true multicritical behaviour. The reduced Hamiltonian 
for the spin-1 model is identical to the Hamiltonian of Nelson and Fisher's metamagnet 
in zero staggered field. The Gaussian tricritical fixed point, however, cannot be reached 
if we start from a Hamiltonian with bilinear and biquadratic exchange interactions 
only. On the other hand, we d o  have a tricritical point, in agreement with previous 
calculations, if the initial Hamiltonian includes single-ion terms. In  a forthcoming 
publication we plan to use the Baker-Hubbard transformation to consider the complete 
Blume-Emery-Griffiths model, with the inclusion of cubic terms, and to make contact 
with the real space renormalisation group calculations. 
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Appendix 

Explicit forms of the coefficients in equation (3.13) for the reduced Hamiltonian: 

w0 = Y,,L:, ' + D ( A I )  

TI =4A,,J?djkH T2 = 4 A , ,  J4d / k (A21 

0, = ad 'A,, ,d'  2 / A , , A [ , 2  U ? =  a" ' A , , , d '  ' / A : , '  

U , ,  = ad- 'A, , , ,dZ/A; ,  U : ? =  a d - 4 A , , , , d 2 / A f ,  (A31 

2u,: = ad ' A  ,,,, d' /A, ,A, ,  
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