Renormalisation group calculations for a spin-1 Ising model with bilinear and biquadratic exchange interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20189
(http://iopscience.iop.org/0305-4470/20/1/027)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 15:08

Please note that terms and conditions apply.

Renormalisation group calculations for a spin-1 Ising model with bilinear and biquadratic exchange interactions

C E I Carneiro \dagger, Vera B Henriques \ddagger and S R Salinas \ddagger
\dagger Instituto de Estudos Avançados, Centro Técnico Aeroespacial, 12200 São José dos Campos, SP, Brazil
\ddagger Instituto de Física, Universidade de São Paulo, Caixa Postal 20516, 01498 São Paulo, SP, Brazil

Received 20 January 1986, in final form 28 April 1986

Abstract

We perform mean-field and renormalisation group calculations for a spin-1 Ising model with bilinear and biquadratic exchange interactions. A special Baker-Hubbard formula is used to transform from discrete to continuous spin-like variables. In momentum space, this spin-1 model and the Ising metamagnet in zero staggered field can be described by the same reduced Hamiltonian. We show that the Gaussian tricritical fixed point cannot be reached without the inclusion of single-ion terms in the initial Hamiltonian.

1. Introduction

We report detailed mean-field and renormalisation group calculations for a spin-1 Ising model with bilinear and biquadratic exchange interactions. This model Hamiltonian, which is a special case of the Blume-Emery-Griffiths (BEG) model for the multicritical behaviour of ${ }^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ mixtures (Blume et al 1971), is relevant, for instance, in the study of some very simple compressible Ising systems.

There are different ways to account for the influence of elastic vibrations on the critical properties of Ising spin systems (Salinas 1974, Bergman and Halperin 1976, Bruno and Sak 1980). For example, Domb (1956) considered an Ising model where the exchange parameter J depends on the volume of the crystal lattice. In Domb's model, there is a mechanical instability and the transition becomes first order. On the other hand, in a well known publication, Baker and Essam (1970) introduced a simple cubic Ising model where the exchange parameter is a linear function of the atomic displacements, the elastic potentials are harmonic and the shear forces are completely neglected. This compressible Ising model, which can be solved exactly in two dimensions, presents a continuous phase transition, with renormalised critical exponents at fixed densities. In a subsequent publication, Gunther et al (1971) noticed that the solution of the Baker-Essam model could have been considerably simplified in a particular ensemble, with fixed forces acting on all rows and columns of atoms. In this force ensemble, if we integrate the elastic degrees of freedom, it is easy to write an effective spin Hamiltonian

$$
\begin{equation*}
\mathscr{H}=-J_{2} \sum_{(i j)} S_{i} S_{j}-J_{4} \sum_{(i j)} S_{i}^{2} S_{i}^{2} \tag{1.1}
\end{equation*}
$$

where J_{2} is a linear function of the forces, J_{4} is a positive constant and (ij) represents a sum over nearest neighbours on a hypercubic lattice in d dimensions. Of course, for spin $\frac{1}{2}$, the second term on the right-hand side of equation (1.1) is a constant and the problem reduces to the calculation of the usual Ising partition function. In this case, the transition is of second order in the force ensemble, with Ising critical exponents, and, as we remarked above, the critical indices corresponding to fixed densities are Fisher-renormalised (Fisher 1968). It is then interesting to investigate the nature of the phase transition of general spin compressible Ising models in the force ensemble. In the present paper, in particular, we assume the simplest possibility, namely $S_{i}=+1,0,-1$, for all sites i, and focus the attention on the model Hamiltonian given by equation (1.1).

As we report in § 2, a naive mean-field calculation, via the Bogoliubov inequality with a one-parameter free trial Hamiltonian, leads to a tricritical point separating lines of second- and first-order phase transitions. By the way, this result still persists if we assume a continuous spin variable, insert the usual weight factor and perform an ε-expansion renormalisation group calculation. However, a more detailed mean-field calculation, involving a two-parameter trial Hamiltonian, indicates the suppression of the tricritical point and the line of first-order transitions, in qualitative agreement with results for the spin- $\frac{1}{2}$ model. Also, this is in agreement with exact calculations for the Curie-Weiss long-range version of the model Hamiltonian (1.1).

The lack of agreement between the mean-field calculations, as well as the possible occurrence of a fluctuation induced tricritical point (Aharony and Blankschtein 1984), motivated the undertaking of a renormalisation group analysis of the spin-1 Ising model given by equation (1.1). In § 3 we perform a Baker-Hubbard transformation (Baker 1962, Hubbard 1972) from discrete spins to a pair of continuous spin-like variables. To make contact with previous calculations (see, for example, Lawrie and Sarbach 1984), we include in equation (1.1) a single-ion term, given by $\Delta \Sigma_{i} S_{i}^{2}$. The reduced Hamiltonian, in terms of critical and non-critical spin fields, may be cast in the same form which had already been considered by Nelson and Fisher (1975) in the treatment of the Ising metamagnet. In $\S 4$ we use the results of Nelson and Fisher's paper to reproduce the configuration of fixed points, with the inclusion of a Gaussian tricritical fixed point. As the Baker-Hubbard transformation does not require the use of unknown weight factors, we are able to show that, for $\Delta=0$, the tricritical fixed point cannot be reached from the physical parameter space. We thus conclude that the transition of the Baker-Essam model is always second order, without the occurrence of fluctuation induced multicritical points. This is also in agreement with results from real space renormalisation group calculations for two-dimensional (Berker and Wortis 1976, Kaufman et al 1981) as well as three-dimensional (Yeomans and Fisher 1981) versions of the beg model. Some final remarks and possible extensions of this work are presented in § 5 .

2. Mean-field calculations

The mean-field expression for the Gibbs free energy, $G(T, H, N)$, where T is temperature, H is the applied field and N is the number of spins, may be obtained from the Bogoliubov inequality

$$
\begin{equation*}
G \leqslant G_{0}+\left\langle\mathscr{H}-\mathscr{H}_{0}\right\rangle_{0} \equiv \Phi \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{0}=-k_{\mathrm{B}} T \ln \left(\sum_{\left\{S_{,}\right\}} \exp \left(-\beta \mathscr{H}_{0}\right)\right) \tag{2.2}
\end{equation*}
$$

$\beta=\left(k_{\mathrm{B}} T\right)^{-1}, k_{\mathrm{B}}$ is Boltzmann's constant and \mathscr{H}_{0} is a trial Hamiltonian. The sum is over spin configurations and the canonical average $\langle\ldots\rangle_{0}$ is taken with respect to \mathscr{H}_{0}. We have considered two distinct trial Hamiltonians:

$$
\begin{equation*}
\mathscr{H}_{0}=-\eta \sum_{i} S_{i} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{H}_{0}=-\eta_{1} \sum_{i} S_{i}-\eta_{2} \sum_{i} S_{i}^{2} \tag{2.4}
\end{equation*}
$$

where η, η_{1} and η_{2} are variational parameters with respect to which we minimise Φ to obtain the mean-field approximation for the Gibbs free energy.

Using the trial Hamiltonian (2.3) we show the existence of a λ line which ends at a tricritical point given by $k_{\mathrm{B}} T / q J_{2}=\frac{4}{3}$ and $p=J_{4} / J_{2}=3$. Using the trial Hamiltonian (2.4), with two variational parameters associated with S_{i} and S_{i}^{2} respectively, as suggested by the renormalisation group calculations of the following section, we obtain $(1 / N) \Phi=-(1 / \beta) \ln \left[1+2 \exp \left(\beta \eta_{2}\right) \cosh \beta \eta_{1}\right]-\frac{1}{2} q J_{2} m_{1}^{2}-\frac{1}{2} q J_{4} m_{2}^{2}-\left(H-\eta_{1}\right) m_{1}+\eta_{2} m_{2}$
where

$$
\begin{equation*}
m_{1}=\frac{2 \exp \left(\beta \eta_{2}\right) \sinh \beta \eta_{1}}{1+2 \exp \left(\beta \eta_{2}\right) \cosh \beta \eta_{1}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{2}=\frac{2 \exp \left(\beta \eta_{2}\right) \cosh \beta \eta_{1}}{1+2 \exp \left(\beta \eta_{2}\right) \cosh \beta \eta_{1}} . \tag{2.7}
\end{equation*}
$$

It is convenient to use equations (2.6) and (2.7) to write η_{1} and η_{2} in terms of m_{1} and m_{2}. We then minimise Φ with respect to the non-critical density m_{2} and write the Landau expansion

$$
\begin{gather*}
\frac{1}{N} \Phi=\frac{1}{\beta} \ln (1-a)+\frac{1}{2} q J_{4} a^{2}-H m_{1}+\frac{1}{2 \beta}\left(\frac{1}{a}-\beta q J_{2}\right) m_{1}^{2} \\
+\frac{1}{\beta} \frac{-1+3 a-2 \gamma a(1-a)}{24 a^{3}[1-\gamma a(1-a)]^{2}} m_{1}^{4}+\mathrm{O}\left(m_{1}^{6}\right) \tag{2.8}
\end{gather*}
$$

where $\gamma=\beta q J_{4}$ and a is the solution of the equation

$$
\begin{equation*}
a=2(1-a) \exp (\gamma a) . \tag{2.9}
\end{equation*}
$$

In the $T \times p$ space, the critical line is given by

$$
\begin{equation*}
a \beta q J_{2}=1 \tag{2.10}
\end{equation*}
$$

In this case, it is straightforward to see that there is no tricritical point, since the coefficient of the quartic term is positive along the critical line for all physical values of T and p. This conclusion still holds if we perform an exact calculation for the Curie-Weiss long-range version of Hamiltonian (1.1), as in the work of Tanaka and Mannari (1976). Also, it should be remarked that a Bragg-Williams calculation, as in the work of Lajzerowicz and Sivardière (1975), leads to the same mean-field equations of state which can be obtained from the minimisation of Φ.

3. The continuous variable formulation

To perform an ε-expansion renormalisation group calculation it is important to transform from discrete to continuous spin-like variables. This is usually done by the Gaussian transformation:
$\exp \left(\frac{1}{2} \sum_{i, j} S_{i} K_{i j} S_{j}\right)=$ constant $\times \prod_{k=1}^{N} \int_{-\infty}^{+\infty} \mathrm{d} X_{k} \exp \left(-\frac{1}{2} \sum_{i, j} X_{i} K_{i j}^{-1} X_{j}+\sum_{i} S_{i} X_{i}\right)$.
However, for most spin systems $K_{i i}=0$ and this transformation is not well defined (since $\operatorname{Tr} K=0$, which leads to negative or zero eigenvalues for the matrix K). For spin $\frac{1}{2}, S_{i}^{2}=1$ and it is easy to remedy this problem. In this case we can add to $K_{i j}$ an arbitrary constant matrix element, $c \delta_{i, j}$, the only consequence being a shift of the energy by a trivial constant term $c N$. For arbitrary spin, this trick does not work and we have to resort to another version of the Gaussian formula (Baker 1962):
$\exp \left(\frac{1}{2} \sum_{i, j} S_{i} K_{i j} S_{j}\right)=\prod_{k=1}^{N} \int_{-\infty}^{+\infty} \frac{\mathrm{d} X_{k}}{(2 \pi)^{1 / 2}} \exp \left(-\frac{1}{2} \sum_{i} X_{i}^{2}-\sum_{i, j} X_{i} K_{i j}^{1 / 2} S_{j}\right)$
which holds for all symmetric matrices $K_{i j}$, where $K_{i j}^{1 / 2}$ satisfies the equation

$$
\begin{equation*}
\sum_{j} K_{i j}^{1 / 2} K_{j k}^{1 / 2}=K_{i k} . \tag{3.3}
\end{equation*}
$$

The partition function associated with Hamiltonian (1.1), in zero field but with the inclusion of a single-ion term, is given by

$$
\begin{equation*}
Z=\sum_{\left\{S_{i}\right\}} \exp \left(\frac{1}{2} \sum_{i, j} K_{i j} S_{i} S_{j}+\frac{1}{2} \sum_{i, j} L_{i j} S_{i}^{2} S_{j}^{2}-D \sum_{i} S_{i}^{2}\right) \tag{3.4}
\end{equation*}
$$

where $\left(K_{i j} ; L_{i j}\right) \equiv\left(\beta J_{2} ; \beta J_{4}\right)$, when i and j are nearest neighbours, and zero otherwise, and $D \equiv \beta \Delta$. Using the transformation (3.2) we have

$$
\begin{align*}
Z=\sum_{\left\{S_{\}}\right\}} \prod_{k} \int_{-\infty}^{+\infty} & \frac{\mathrm{d} X_{k}}{(2 \pi)^{1 / 2}} \frac{\mathrm{~d} Y_{k}}{(2 \pi)^{1 / 2}} \exp \left(-\frac{1}{2} \sum_{i} X_{i}^{2}-\frac{1}{2} \sum_{i} Y_{i}^{2}-\sum_{i, j} X_{i} K_{i j}^{1 / 2} S_{j}\right. \\
& \left.-\sum_{i, j} Y_{i} L_{i j}^{1 / 2} S_{j}^{2}-D \sum_{i} S_{i}^{2}\right) \tag{3.5}
\end{align*}
$$

where $K_{i j}^{1 / 2}=\beta J_{2}^{1 / 2}$ and $L_{i j}^{1 / 2}=\beta J_{4}^{1 / 2}$ when i and j are nearest neighbours. It should be remarked that the continuous variable X_{i} is associated with S_{i} and Y_{i} with S_{i}^{2}. After performing the sum over configurations we have
$Z=\int \mathrm{D} X \mathrm{D} Y \exp \left(-\frac{1}{2} \sum_{i} X_{i}^{2}-\frac{1}{2} \sum_{i} Y_{i}^{2}+\sum_{i} \ln \left(1+2 \mathrm{e}^{-w_{i}} \cosh x_{i}\right)\right)$
where

$$
w_{i}=\sum_{j} Y_{j} L_{j i}^{1 / 2}+D \quad x_{i}=\sum_{j} X_{j} K_{j i}^{1 / 2}
$$

and

$$
\begin{equation*}
\int \mathrm{D} X \mathrm{D} Y=\prod_{k=1}^{N} \int_{-\infty}^{+\infty} \frac{\mathrm{d} X_{k}}{(2 \pi)^{1 / 2}} \frac{\mathrm{~d} Y_{k}}{(2 \pi)^{1 / 2}} \tag{3.7}
\end{equation*}
$$

The reduced Hamiltonian to perform the renormalisation group calculations may be found by expanding the integrand in equation (3.6) about its saddle point, given by the solutions of the equations

$$
\begin{equation*}
-X_{1}+\sum_{l} \frac{2 \exp \left(-w_{j}\right) \sinh x_{j}}{1+2 \exp \left(-w_{l}\right) \cosh x_{j}} K_{i /}^{1 / 2}=0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
-Y_{i}-\sum_{i} \frac{2 \exp \left(-w_{i}\right) \cosh x_{j}}{1+2 \exp \left(-w_{j}\right) \cosh x_{j}} L_{i j}^{1 / 2}=0 \tag{3.9}
\end{equation*}
$$

There is a trivial paramagnetic solution, $X_{1}=0$ and $Y_{1}=Y_{0}$, such that

$$
\begin{equation*}
-Y_{0}=\frac{2 \exp \left(-Y_{0} L_{0}^{1 / 2}-D\right)}{1+2 \exp \left(-Y_{0} L_{0}^{1 / 2}-D\right)} L_{i / 2}^{1 / 2} \tag{3.10}
\end{equation*}
$$

where $L_{0}^{1 / 2}=\Sigma, L_{i j}^{1 / 2}$ is the Fourier transform of $L_{i j}^{1 / 2}$ at zero momentum. It should be remarked that equations (3.8) and (3.9) correspond to the minimisation conditions of the mean-field free energy given by equation (2.5). The expansion about the paramagnetic solution yields the equation

$$
\begin{equation*}
Z=\exp \left(\overline{\mathscr{H}}_{0}\right) \int \mathrm{D} X \mathrm{D} Y \exp (\overline{\mathscr{H}}) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathscr{H}}_{0}=-\frac{1}{2} N Y_{0}^{2}+N \ln \left[1+2 \exp \left(-Y_{0} L_{0}^{1 / 2}-D\right)\right] \tag{3.12}
\end{equation*}
$$

and $\overline{\mathscr{F}}$ is the reduced Hamiltonan. Then $\overline{\mathscr{H}}$ can be rewritten according to the following steps: (i) an expansion about the paramagnetic solution up to fourth-order terms in X_{i} and $\delta Y_{i} \equiv Y_{i}-Y_{6}$, (ii) a d-dimensional Fourier transformation, (iii) the usual low-momentum expansion of all the coefficients and (iv) a rescaling of the spin variables, $\sigma_{1, k} \rightarrow X_{k}$ and $\sigma_{2, k} \rightarrow \delta Y_{h}$. If we suppress the notation for vectors in the Fourier space, it is possible to write

$$
\begin{align*}
\overline{\mathscr{H}}=-\frac{1}{V} \sum_{k} \frac{1}{2}\left(r_{1}\right. & \left.+k^{2}\right) \sigma_{1, k} \sigma_{1,-k}-\frac{1}{V} \sum_{k} \frac{1}{2}\left(r_{2}+k^{2}\right) \sigma_{2, k} \sigma_{2,-k} \\
& -\frac{1}{V^{2}} \sum_{k_{1} k_{2}}\left(\omega_{1} \sigma_{1, k_{1}} \sigma_{1, k_{2}} \sigma_{2,-k_{1}-k_{2}}-\omega_{2} \sigma_{2, k_{1}} \sigma_{2, k_{2}} \sigma_{2,-k_{1}-k_{2}}\right) \\
& -\frac{1}{V^{3}} \sum_{k_{1} k_{2} k_{3}}\left(u_{11} \sigma_{1, k_{1}} \sigma_{1, k_{2}} \sigma_{1, k_{3}} \sigma_{1,-k_{1}-k_{2}-k_{1}}\right. \\
& +2 u_{12} \sigma_{1, k_{1}} \sigma_{1, k_{2}} \sigma_{2, k_{2}} \sigma_{2,-k_{1}-k_{2}-k_{3}} \\
& \left.+u_{22} \sigma_{2, k_{1}} \sigma_{2, k_{2}} \sigma_{2, k_{3}} \sigma_{2,-k_{1}-k_{2}-k_{3}}\right) \tag{3.13}
\end{align*}
$$

where $r_{1}=k_{\mathrm{B}}\left(T-T_{1}\right) / 2 A_{\mathrm{kx}} J_{2} a^{2}, r_{2}=k_{\mathrm{B}}\left(T-T_{2}\right) / 2 A_{y 3} J_{4} a^{2}, a$ is the lattice spacing, $N a^{d}=V$ and the remaining expressions are defined in the appendix.

4. The renormalisation group treatment

The reduced Hamiltonian, given by equation (3.13), corresponds to the Nelson and Fisher Hamiltonian for the Ising metamagnet in zero staggered field (compare with
equation (3.3) of Nelson and Fisher (1975) for $r_{12}=\omega_{3}=\omega_{4}=0$). Some differences, such as the sign in front of ω_{2}, are associated with irrelevant variables, which will disappear after a few iterations. The renormalisation group analysis is therefore entirely analogous to that of Nelson and Fisher (1975). However, as this paper has a number of misprints, and there are no errata available, we have decided to reproduce the main steps of their calculations with the necessary corrections.

According to Nelson and Fisher (1975), we use perturbation theory to treat the non-quadratic terms of the reduced Hamiltonian, with the ansatz $r_{1}, u_{11}, u_{12}, u_{22}=\mathrm{O}(\varepsilon)$ and $\omega_{1}, \omega_{2}=\mathrm{O}(\sqrt{\varepsilon})$, where $\varepsilon=4-d$. In order to generate a new Hamiltonian $\overline{\mathscr{H}}^{\prime}$ from $\overline{\mathscr{H}}$, we choose a rescaling factor $b>1$ and integrate over the spin variables $\sigma_{1, q}, \sigma_{2, q}$ with momentum $b q$ outside the original Brillouin zone. The spin field rescaling factors c_{1} and c_{2} are allowed to be distinct. The inverse Feynman propagators are given by

$$
\begin{equation*}
G_{1}^{-1}\left(q, r_{1}\right)=r_{1}+e_{1} q^{2} \tag{4.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}^{-1}\left(q, r_{2}\right)=r_{2}+e_{2} q^{2} \tag{4.1b}
\end{equation*}
$$

where the reason to take $e_{2} \neq e_{1}$ (with $e_{1}=1$) will become clear later.
After each renormalisation group iteration, the cubic terms in the reduced Hamiltonian generate linear terms in the spin field $\sigma_{2, q}$. Then, to obtain a transformed Hamiltonian with the same form as before, without linear terms, it is necessary to shift σ_{2} after each iteration. According to these procedures we obtain the recursion relations

$$
\begin{gather*}
r_{1}^{\prime}=c_{1}^{2} b^{-d}\left[r_{1}+12 A_{10} u_{11}-4 A_{11} \omega_{1}^{2}-2 A_{10}\left(\omega_{1}^{2} / r_{2}\right)+\mathrm{O}\left(u_{12}, \omega_{1} \omega_{2}\right)\right] \tag{4.2}\\
r_{2}^{\prime}=c_{2}^{2} b^{-d}\left(r_{2}-2 A_{20} \omega_{1}^{2}+\mathrm{O}\left(u_{12}, u_{22}, \omega_{2}^{2}, \omega_{1} \omega_{2}\right)\right) \tag{4.3}\\
e_{1}^{\prime}=c_{1}^{2} b^{-d-2} e_{1}+\mathrm{O}\left(\omega_{1}^{2}, \omega_{1} \omega_{2}\right) \tag{4.4}\\
e_{2}^{\prime}=c_{2}^{2} b^{-d-2} e_{2}+\mathrm{O}\left(\omega_{2}^{2}, \omega_{1} \omega_{2}\right) \tag{4.5}\\
\omega_{1}^{\prime}=c_{1}^{2} c_{2} b^{-2 d}\left(\omega_{1}-12 A_{20} \omega_{1} u_{11}+4 A_{21} \omega_{1}^{3}+\mathrm{O}\left(\omega_{1} u_{12}, \omega_{2} u_{12}, \omega_{1} \omega_{2}^{2}\right)\right) \tag{4.6}\\
\omega_{2}^{\prime}=c_{2}^{3} b^{-2 d}\left(\omega_{2}+\frac{4}{3} A_{30} \omega_{1}^{3}+\mathrm{O}\left(\omega_{2} u_{22}, \omega_{1} u_{12}, \omega_{2}^{3}, \omega_{1} u_{22}\right)\right) \tag{4.7}\\
u_{11}^{\prime}=c_{1}^{4} b^{-3 d}\left(u_{11}-36 A_{20} u_{11}^{2}+24 A_{21} u_{11} \omega_{1}^{2}-4 A_{22} \omega_{1}^{4}+\mathrm{O}\left(u_{12}^{2}, u_{12} \omega_{1}^{2}\right)\right) \tag{4.8}\\
u_{12}^{\prime}=c_{1}^{2} c_{2}^{2} b^{-3 d}\left(u_{12}+24 A_{30} u_{11} \omega_{1}^{2}-8 A_{31} \omega_{1}^{4}+\mathrm{O}\left(u_{12} u_{11}, u_{12}^{2}, u_{12} \omega_{1}^{2}, u_{22} \omega_{1}^{2}, \omega_{1}^{2} \omega_{2}^{2}\right)\right) \tag{4.9}\\
u_{22}^{\prime}=c^{4} b^{-3 d}\left(u_{22}-2 A_{40} \omega_{1}^{4}+\mathrm{O}\left(u_{22}^{2}, u_{12}^{2}, u_{12} \omega_{1}^{2}, u_{22} \omega_{2}^{2}, \omega_{2}^{4}\right)\right) \tag{4.10}
\end{gather*}
$$

where

$$
\begin{equation*}
A_{l m}=\int_{q}^{>}\left[G_{1}(q)\right]^{l}\left[G_{2}(q)\right]^{m} \tag{4.11}
\end{equation*}
$$

in which we integrate over the outer d-dimensional momentum shell as discussed before. We have also anticipated the fact that ω_{2}, u_{12} and u_{22} are irrelevant.

From equation (4.3) we see that if c_{1} and c_{2} are chosen such that e_{1} and e_{2} are kept equal to unity, then r_{2} diverges when r_{1} is at criticality. This happens because A_{20} contains two G_{1} propagators which develop infrared singularities when $r_{1}=0$. This can be avoided by choosing

$$
\begin{equation*}
c_{1}=b^{3-\varepsilon / 2}\left(1+\mathrm{O}\left(\varepsilon^{2}\right)\right) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}=b^{2-\varepsilon / 2}\left[1+A_{20}\left(\omega_{1}^{2} / r_{2}\right)+\mathrm{O}\left(\varepsilon^{2}\right)\right] . \tag{4.13}
\end{equation*}
$$

Also, r_{2} is kept fixed, $e_{2}=1$ and we have

$$
\begin{array}{ll}
e_{2}^{\prime}=b^{-2}\left(e_{2}+\mathrm{O}\left(\varepsilon^{2}\right)\right) & \omega_{2}^{\prime}=b^{-2+\varepsilon / 2}\left(\omega_{2}+\mathrm{O}\left(\varepsilon^{3 / 2}\right)\right) \\
u_{22}^{\prime}=b^{-4+\varepsilon}\left(u_{22}+\mathrm{O}\left(\varepsilon^{2}\right)\right) & u_{12}^{\prime}=b^{-2+\varepsilon}\left(u_{12}+\mathrm{O}\left(\varepsilon^{2}\right)\right)
\end{array}
$$

from which we see that $e_{2}, \omega_{2}, u_{22}$ and u_{12}, are irrelevant and disappear after a few renormalisation group iterations. Finally, we have, up to terms of $O\left(\varepsilon^{2}\right)$,

$$
\begin{align*}
& r_{1}^{\prime}=b^{2}\left[r_{1}+12 A_{10} u_{11}-6 A_{10}\left(\omega_{1}^{2} / r_{2}\right)-12 A_{20} r_{1} u_{11}+6 A_{20} r_{1}\left(\omega_{1}^{2} / r_{2}\right)\right] \tag{4.15}\\
& \omega_{1}^{\prime}=\omega_{1}+\omega_{1 \frac{1}{2}} \frac{1}{2} \ln b-12 A_{20} \omega_{1} u_{11}+5 A_{20} \omega_{1}^{3} / r_{2} \tag{4.16}\\
& u_{11}^{\prime}=u_{11}+u_{11} \varepsilon \ln b-36 A_{20} u_{11}^{2}+24 A_{20} u_{11} \omega_{1} / r_{2}-4 A_{20} \omega_{1}^{4} / r_{2}^{2} \tag{4.17}
\end{align*}
$$

where the integrals A_{10} are calculated for $d=4$ with $r_{1}=0$. At this point, it should be emphasised that we are considering the case $r_{2}>r_{1}$. This corresponds to $T_{2}<T_{1}$, i.e. either to $\Delta=0$ or to $p \equiv J_{4} / J_{2}<1$ for $\Delta \neq 0$, as can be seen from equations (3.10) and (A4).

If we define

$$
\begin{equation*}
x=\omega_{1}^{2} / r_{2} \tag{4.18}
\end{equation*}
$$

the fixed points of equations (4.16) and (4.17) are given by

$$
\begin{array}{ll}
u_{11}^{*}=0 & x^{*}=0 \\
u_{11}^{*}=\frac{1}{36} \bar{\varepsilon} & x^{*}=0 \\
u_{11}^{*}=\frac{1}{9} \bar{\varepsilon} & x^{*}=\frac{1}{6} \bar{\varepsilon} \\
u_{11}^{*}=\frac{1}{4} \bar{\varepsilon} & x^{*}=\frac{1}{2} \bar{\varepsilon} \tag{4.19d}
\end{array}
$$

where

$$
\begin{equation*}
\bar{\varepsilon}=\frac{\varepsilon \ln b}{A_{20}\left(r_{1}=0, e_{1}=1\right)}=c \varepsilon . \tag{4.20}
\end{equation*}
$$

As $A_{20} \sim \ln b$, the constant c does not depend on b. The nature of the fixed points can be determined by studying the eigenvalues $\Lambda_{i}=b^{\lambda}$ of the linearised recursion relations

$$
\left(\begin{array}{c}
r_{1}^{\prime}-r_{1}^{*} \tag{4.21}\\
u_{11}^{\prime}-u_{11}^{*} \\
x^{\prime}-x^{*}
\end{array}\right)=L\left(\begin{array}{c}
r_{1}-r_{1}^{*} \\
u_{11}-u_{11}^{*} \\
x-x^{*}
\end{array}\right) .
$$

In particular, the critical exponent ν is given by $\nu=1 / \lambda_{1}$, where λ_{1} is the largest eigenvalue. From equations (4.4) and (4.12), we see that $e_{1}=1+\mathrm{O}\left(\varepsilon^{2}\right)$, which yields $\eta=\mathrm{O}\left(\varepsilon^{2}\right)$. These results are summarised in table 1 .

It remains to be analysed whether the fixed points are accessible from the physical parameter space. The condition for the existence of a tricritical point is the vanishing

Table 1. Fixed points, eigenvalues λ, and the corresponding eigenvectors $y_{\text {; }}$ in the subspace u_{11}, x and the critical exponents ν associated with the recursion relations given by equations (4.15)-(4.17).

Fixed points	$u_{i 1}^{*}$	x^{*}	r^{*}	λ_{1}	λ_{2}	y_{2}	λ_{3}	y_{3}	ν	Type
(a)	0	0	0	2	ε	$(1,0)$	ε	$(0,1)$	$\frac{1}{2}$	Gaussian
(b)	$\frac{1}{3 \hbar} \bar{\varepsilon}$	0	$-\frac{\bar{\varepsilon} b^{2} A_{11}}{3\left(b^{2}-1\right)}$	$2-\frac{1}{2} \varepsilon$	$-\varepsilon$	$(1,0)$	$\frac{1}{4} \varepsilon$	$(1,2)$	$\vdots+\frac{1}{12} \varepsilon$	Ising-like
(c)	$\frac{1}{9} \bar{\varepsilon}$	$\frac{1}{4} \bar{\varepsilon}$	$-\frac{\bar{\varepsilon} b^{2} A_{10}}{3\left(b^{2}-1\right)}$	$2-\frac{1}{3} \varepsilon$	$-\frac{1}{3} \varepsilon$	$(1,3)$	$-\varepsilon$	$(2,3)$	$\frac{1}{2}+\frac{1}{12} \varepsilon$	Ising-like
(d)	$\frac{1}{4} \bar{\varepsilon}$	$\frac{1}{2} \bar{\varepsilon}$	0	2	$-\varepsilon$	$(1,2)$	ε	$(1,3)$	$\frac{1}{2}$	Gaussian

of the coefficient g of the quartic term in the critical field σ_{1} after the integration over the non-critical fields. It is easy to show that

$$
\begin{equation*}
g=u_{11}-\omega_{1}^{2} / 2 r_{2} \tag{4.22}
\end{equation*}
$$

Using the expressions for the couplings, given in §3, we have

$$
\begin{align*}
g & =\frac{a^{d-4} d^{2}}{A_{x x}^{2}}\left(A_{x x x x}-\frac{A_{x x y}^{2} d J_{4}}{k_{\mathrm{B}}\left(T-T_{2}\right)}\right) \\
& =\frac{a^{d-4} d^{2}\left(1+2 \mathrm{e}^{\tilde{p}}\right)\left(2 \mathrm{e}^{\dot{p}}-p-\frac{1}{2}\right)}{6 \mathrm{e}^{\tilde{p}}\left(2 \mathrm{e}^{\tilde{p}}-p+1\right)} \tag{4.23}
\end{align*}
$$

where $p \equiv-Y_{0} L_{0}^{1 / 2}$ and $\tilde{p} \equiv-w_{0}=p-D$. For $D=0$, as in the Baker-Essam model, $g \neq 0$ for all p, and there is no tricritical point. For $D \neq 0$, however, as in the work of Blume et al (1971), g may vanish and there is a tricritical point. It should be remarked that the parameter p may be easily interpreted as the ratio J_{4} / J_{2} up to terms of order ε.

5. Conclusions

We have performed mean-field and renormalisation group calculations for a spin-1 Ising model with bilinear and biquadratic exchange interactions. Although a naive mean-field variational approach leads to a tricritical point, a more refined approximation, based on two variational parameters, shows that the transition is always second order.

We have used a special Baker-Hubbard Gaussian formula to transform the Hamiltonian, with the addition of single-ion terms, from discrete to continuous spin-like variables. As the transformation keeps track of the original parameters of the model, we were able to establish the true multicritical behaviour. The reduced Hamiltonian for the spin-1 model is identical to the Hamiltonian of Nelson and Fisher's metamagnet in zero staggered field. The Gaussian tricritical fixed point, however, cannot be reached if we start from a Hamiltonian with bilinear and biquadratic exchange interactions only. On the other hand, we do have a tricritical point, in agreement with previous calculations, if the initial Hamiltonian includes single-ion terms. In a forthcoming publication we plan to use the Baker-Hubbard transformation to consider the complete Blume-Emery-Griffiths model, with the inclusion of cubic terms, and to make contact with the real space renormalisation group calculations.

Appendix

Explicit forms of the coefficients in equation (3.13) for the reduced Hamiltonian:

$$
\begin{gather*}
w_{0}=Y_{0} L_{0}^{1 / 2}+D \tag{Al}\\
T_{1}=4 A_{v x} J_{2} d / k_{\mathrm{B}} \quad T_{2}=4 A_{y y} J_{4} d / k_{\mathrm{B}} \tag{A2}\\
\omega_{1}=a^{d / 2-3} A_{\mathrm{xxy}} d^{3 / 2} / A_{\mathrm{xx}} A_{v y}^{1 / 2} \quad \omega_{2}=a^{d / 2-3} A_{\mathrm{wy}} d^{3 / 2} / A_{y y}^{3 / 2} \\
u_{11}=a^{d-4} A_{\mathrm{xxrx}} d^{2} / A_{x x}^{2} \quad u_{22}=a^{d-4} A_{y y y} d^{2} / A_{y r}^{2} \tag{A3}\\
2 u_{12}=a^{d-4} A_{\mathrm{vxy}} d^{2} / A_{x x} A_{\mathrm{ry}} \\
A_{x x}=-Y_{0} / 2 L_{0}^{1 / 2} \quad A_{y y}=\frac{Y_{0}^{2} \exp \left(w_{0}\right)}{4\left(L_{0}^{1 / 2}\right)^{2}} \quad \frac{A_{x x y}=Y_{0}^{2} \exp \left(w_{0}\right)}{4\left(L_{0}^{1 / 2}\right)^{2}} \\
A_{y y y}=-\frac{Y_{0}^{3} \exp \left(w_{0}\right)\left[2-\exp \left(w_{0}\right)\right]}{24\left(L_{0}^{1 / 2}\right)^{3}} \tag{A4}\\
A_{x x y y}=-\frac{Y_{0}^{3} \exp \left(w_{0}\right)\left[2-\exp \left(w_{0}\right)\right]}{16\left(L_{0}^{1 / 2}\right)^{3}} \quad A_{x x x x}=-\frac{Y_{0}^{3}\left[8+2 \exp \left(w_{0}\right)-\exp \left(2 w_{0}\right)\right]}{96\left(L_{0}^{1 / 2}\right)^{3}} \quad \text { (A4) } \\
A_{y y y}=\frac{Y_{0}^{4} \exp \left(w_{0}\right)\left[8 \exp \left(w_{0}\right)-4-\exp \left(2 w_{0}\right)\right]}{192\left(L_{0}^{1 / 2}\right)^{4}}
\end{gather*}
$$

References

Aharony A and Blankschtein D 1984 Multicritical Phenomena ed R Pynn and A Sjkeltorp (New York:
Plenum) p 155
Baker G E 1962 Phys. Rev. 1262061
Baker G E and Essam J W 1970 Phys. Rev. Lett. 24447
Bergman D J and Halperin B I 1976 Phys. Rev. B 132145
Berker A N and Wortis M 1976 Phys. Rer. B 144946
Blume M, Emery V J and Griffiths R B 1971 Phys. Rev. A 41071
Bruno J and Sak J 1980 Phys. Rev. B 223302
Domb C 1956 J. Chem. Phys. 25783
Fisher M E 1968 Phys. Rev. 176257
Gunther L, Bergman D J and Imry Y 1971 Phys. Rev. Lett. 27558
Hubbard J 1972 Phys. Lett. 39A 365
Kaufman M, Griffiths R B, Yeomans J M and Fisher M E 1981 Phys. Rev. B 233448
Lajzerowicz J and Sivardière J 1975 Phys. Rev. A 112079
Lawrie I D and Sarbach S 1984 Phase Transitions and Critical Phenomena vol 9, ed C Domb and J L Lebowitz (New York: Academic) p 1
Nelson D R and Fisher M E 1975 Phys. Rev. B 111030
Salinas S R 1974 J. Phys. C: Solid State Phys. 7241
Tanaka M and Mannari I 1976 J. Phys. Soc. Japan 41741
Yeomans J M and Fisher M E 1981 Phys. Rev. B 242825

